Très étonné aussi qu'un coefficient universel soit obtenu à allongement infini, ce qui sous entend que la spécificité d'un profil est entièrement quantifiée par l'angle de portance nulle alfa0 ???
Olivier quand il y aura suffisamment matière à discussion (et pas trop de déconnade) merci de m'éclairer sur ces points
Bonjour,
je répond d'abord à la seconde question
... (je fais ce que je veux d'abord, na...)
En effet, la théorie des profils minces dit que la pente de portance d'un profil est égale à 2 x pi (pour un angle d'incidence en radians), soit 0.109 (pour un angle d'incidence en degrés), et cela quelquesoit le profil !
et bien c'est à peu près vrai, sauf pour des profils très épais. Ainsi, la connaissance de l'angle de portance nulle donne le Cz pour une incidence donnée.
ça se complique pour connaître le "max" de cette portance, le Cz de décrochage. Là il n'y a pas d'autre méthode que calculs numériques ou mieux, la soufflerie
Et puis, ça se complique encore en ce qui concerne le Cx... Pas de moyen simple non plus de le caractériser.
je joins un lien qui renseigne un peu mieux les valeurs de cette pente de portance pour des profils plus ou moins épais, laminaires ou non, tirés de "Theory of wing sections" :
https://engineering.stackexchange.com/questions/13066/do-all-airfoils-have-a-lift-curve-slope-of-2-piOn y voit que pour des profils "standard" NACA à 4 chiffres, la pente diminue un peu lorsque l'épaisseur augmente, de 0.11 à 0.1 soit pas plus de 10%.
Plus bizarre, sur les NACA laminaires, cette pente augmente un peu quand l'épaisseur augmente !!!
Pour pinailler le poil de c... on peut toujours prendre la pente "exacte" si on connait le profil et ses caractéristiques, mais prendre 0.11 ou 0.1 est une bonne base...
à plusse,
Olivier